Это определение производится по времени продольной релаксации Т1. Для измерения Т1 прибор устанавливается на заданной глубине в интервалах, охарактеризованных по кривой ИСФ как коллекторы, содержащие свободную жидкость. Время продольной релаксации Т1 можно определять с использованием Utп без учета ряда факторов, влияющих на амплитуду ССП,— диаметра скважины, толщины глинистой корки и пространственной ориентации скважины. Измерение Т1 выполняют на глубине залегания исследуемого пласта двумя способами: в сильном поле — Т1с. п и в слабом поле — Т1сл.п.

Для определения Т1с. п проводится серия измерений амплитуд Utп (в В) для различных времен tп (в с) и поляризующего магнитного поля Нп (в А/м). Одно из измерений выполняется с достаточно большим временем tп→∞, обеспечивающим равновесное состояние вектора ядерной намагниченности М∞с.п (в А/м) (см. рис. 81, II, а и б). Этому вектору соответствует амплитуда U∞с.п и Т1с. п может быть рассчитана:

Картинка

Время продольной релаксации в слабом поле Т1с. п определяют по длительности действия остаточного поляризующего поля Ност. Для этого выполняют измерения амплитуд ССП при фиксированном времени поляризации tп, но при последовательно изменяющемся времени действия tост и соответственно остаточного тока Iост (см. рис. 80, II,в,г).

На практике для определения Т1 по результатам измерений не используют непосредственные зависимости амплитуд Utп и Utост от времен tп и tост. Величины Т1 находят графически.

Для этого по результатам измерений вычисляют значения так называемых функций продольной релаксации Fc. п(tп) и Fcл.п(tост), которые в сильном и слабом поле соответственно имеют вид:

Картинка

где U(tп)—амплитуда ССП при времени поляризации tп;

Картинка

где U(tост)—амплитуда ССП при времени действия остаточного тока; U(tост→∞) — амплитуда ССП при tост→∞, непосредственно не измеряемая, а вычисляемая по формуле U(tост→∞)=U0 (Iост/Iп).

Рассчитанные значения функции Fc. п(tп) или Fcл.п(tост) соответствуют реальным измерениям tп и tост и применяются для графического определения Т1. С этой целью вычисленные функции наносятся на бланк с полулогарифмической шкалой (рис. 83).

В однородной водонасыщенной среде, поры которой имеют одинаковые размеры, функция продольной релаксации даже при наличии связанной воды является однокомпонентной. В полулогарифмическом масштабе такая зависимость имеет вид прямой с постоянными Т1 и значениями функций около 0,37 (рис. 83, а). При наличии смеси флюидов с различными Т1 зависимость изображается в виде кривой, которая может быть разложена на несколько прямых. По этим прямым находят Т1 каждого компонента (рис. 83, б). Тангенс угла полученных прямых равен времени Т1.

Как видно из примера, изображенного на рис. 83, прямые, представляющие функции Fc. п(tп) или Fcл.п(tост), переносятся параллельно самим себе так, чтобы они пересекали ось ординат в точке, равной единице. Время Т1, соответствующее ординате 0,37, отсчитывается (в мс) на оси абсцисс. Для приближенной оценки Т1 достаточно произвести измерения при двух значениях времени поляризации. При точных определениях производится до 15 измерений для значений tп или tост.

Картинка

В высокопроницаемых пластах наибольшие времена релаксации (больше 1 с) отмечаются в водонасыщенных пластах или нефтенасыщенных, содержащих легкую нефть. Однако дисперсия этих значений велика: на величину Т1 помимо характера насыщения коллектора влияют и такие факторы, как удельная поверхность коллектора, его гидрофильность или гидрофобность, тип пористости, глинистость, вязкость флюида. При различии нефте-, водонасыщенности пласта учитывают, что высоковязкие (смолистые) компоненты нефти при низких температурах характеризуются быстрозатухающими сигналами свободной прецессии и отмечаются низкими показаниями на диаграммах ЯМК. Согласно опыту изучения продуктивных горизонтов с закачиваемой пресной водой, время Т1 зоны проникновения у водоносных коллекторов лежит в пределах 200— 600 мс, а у нефтегазоносных — 700—1000 мс. Кроме того, нефтегазоносные пласты благодаря наличию остаточной нефти или газа в зоне проникновения характеризуются двумя компонентами в характеристике продольной релаксации.

Ядерно-магнитный каротаж предназначен для выделения пластов, содержащих подвижный флюид, определения их пористости и характера насыщения. Комплексирование результатов ЯМК с данными других каротажных исследований скважин позволяет расширить и уточнить возможности количественной оценки пористости коллекторов, их эффективной мощности, насыщенности и промышленной нефтеносности. Метод ЯМК используется также для разделения нефтеносных и битуминизированных пород.

Ограничения метода ЯМК связаны с невозможностью измерения ССП в среде (в глинистом растворе, породе) с повышенной магнитной восприимчивостью, в породах с малой эффективной пористостью (1,5—2%), в том числе в трещинных коллекторах, если часть трещин заполнена глинистым раствором. Этот метод неприменим при очень вязких нефтях — более 600 мПа·с, при наличии в промывочной жидкости свободного флюида — воды или нефти, создающего дополнительный ССП. Недостатками метода являются: длительность измерений (скорость движения прибора ЯМК ограничивается временем поляризации tп>3Т1 и не должна превышать 250 м/ч); малая глубинность исследования (около 0,2 м), вследствие чего влияние зоны проникновения на показания ЯМК велико. Ядерно-магнитный каротаж применим при исследовании разрезов скважин, необсаженных колонной.

Комментариев к статье: 1..
[ Добавить ] комментарий
Поля с пометкой * обязательны для заполнения

*Ваше имя
  Ваш сайт  
  Ваш город
*Ваше сообщение

Код подтверждения
*Код с картинки   @
код на картинке содержит только цифры (0..9) и буквы англ. алфавита (A..Z)